
To, O=(r, z, r) = T2(r, z, ~) -- To, excess temperatures; To, initial temperature; err (x), 
(2n)! 

probability integral; C~ - m! (2n-- m)! ' binomial coefficients ; (3/2)~ = 2-2~ (2n ~n! I)! , Pokhgammer 

symbol; D~(x), parabolic cylinder function; A n m, Bn,m, thermal amplitudes (from the text); 
H~(x), orthogonal Hermite polynomials; wo, content (in time) density of radiation (W/m2); 
y'(n ~ 2, r2/r~), incomplete gamma funct$on; W_ (x), ~mittaker function; Ki = woro/(%To), Fo = 

K, , 
ar/ro, Kirpichev and Fourier numbers; 0~(0, 0, ~), G2(r, 0, T), dimensionless relative tempera- 
tures; L~(x), Laguerre polynomial. 
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NUMERICAL ANalYSIS OF FUNCTIONALLY INTEGRATED VLSIC ELEMENTS 

TAKING INTO ACCOUNT HEAT EFFECTS. 

II. METHOD AND PROGRAM 

I. I. Abramov and V, V. Kharitonov UDC 621.382.82.001:519.95 

The program and method of implementation of a discrete, multidimensional physical- 
topological model, taking into account heat effects, are described. 

After analyzing construction of a discrete physical-topological model of functionally 
integrated VLSIC elements taking into account heat effects [i] we shall now present a method 
for implementing it and we shall describe a universal program. 

Method for Selecting the Starting Approximation. The method is based on the solution of 
a truncated system of equations derived from the starting system (Eqs. (1)-(8) from [I]) with 
the help of a number of physical assumptions. The key assumption is the assumption that the 
temperature is constant over the structure of an element. This means that self-heating of 
the element is neglected in the starting approximation. As a result, Eq. (6) or [i] need not 
be solved. 

The effect of the temperature of the surrounding medium must, however, be taken into ac- 
count. Because of the adopted physical assumptions the equations for the current densities 
can be written in a different form: 

jp = - -  q~p (Too) p v ~ ,  (1) 

i~ =--q~n(Voc) nv$n" (2) 
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For the majority charge carriers we shall employ the assumption of quasiequilibrium. Tak- 
ing into account the form of Eqs. (i) and (2) we obtain 

V ~ p ~ 0 ,  (3) 

V ~ .  ~ o. (4) 

We shall find the Fermi quasilevels of the nonequilibrium charge carriers with the help of the 
equation of continuity. A series of simple transformations gives for the electrons 

VZO~ q- v ln  [ ~  (Toe) nl V ~  = - -  R (Too)/~ (Too) n. (5) 

In Eq. (5) we assume that 

�9 lVz~l ~ l v l n [ ~ ( T o o ) n l v ~ , ~ ! .  

The approximation (6) is more general than (4), since it can be satisfied for small 

71n[~n(Toc)n]. 

(6) 

Thus the simplified equation of continuity for electrons assumes the form 

V2O~ ,~ - -  R (Toc)/~n (Toe) n. (7) 

An analogous approach for holes gives 

V ~ p  ~ R (roJ/~v (Too) p. (8) 

With the use of the Shockley-Reed--Hall model the analysis of two limiting cases in (7) and 
(8), namely, i) pn >> n~ (Toc) and n >> p; 2) pn § n~ (To c) and p § 0, gives 1 l 

VZQ ~ " 1 / ~ o ( T o o ) ,  (9)  

VZ~p ~ 1/~p~vo (Toe). (10) 

In the calculation of Cn, ~9 the regions of the majority and minority charge carriers are 
identified by the sign of the known function N d -- N a. 

The potential 4 is determined from the solution of the Poisson equation (i) of [i] under 
the assumption of quasineutrality and thermodynamic equilibrium over the regions with differ- 
ent conductivity in the device: 

9 ( ~ ,  ~, ToJ = O, p(On, % Too)= 0 ( l l )  

for regions of the p and n types, respectively. 

Thus in choosing the starting approximation the truncated system of equations, consisting 
of (3), (4), (9), (i0), and (ii), is solved for the corresponding regions of the device�9 The 
boundary conditions (9) and (I0) from [i] are employed for the potential 4, and the following 
relations are employed for the Fermi quasilevels: i) ~ = ~ = V on ohmic contacts and 2) 

n p np 
7~n~ s = 7~pHs= 0 on other boundaries. 

and ~ found: The equations (ii) can be solved analytically for the ~n p 

r  N d - - N a < 0 ;  ~ = ~ - + - % ,  N d - - N a ~ 0  

for p and n type regions, respectively; in addition, 4o is calculated from the formula 

% = (kToc/q) sign (N d --  Na) In 2n~ (Toe) q-- 1 -q- 2n~ (Toe) " 

In the finite-difference approximation the physical assumptions that u_(Tor), ~.(Too), 
xn, x are constant on the cell ABCD (see Fig. i of [i]) are employed at the anterio~ node 
i, j p After 4, ~ , ~ are calculated (T equals To_) over the entire structure of the element 

�9 n . the densities are detgrmlned from (8) [l],'while the variable U is determined with the help 
of the equation relating it with T [i]. 

In the case when one contact is not brought directly up to the region of the p or n 
element, the approaches studied in [2] are employed. 
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Classification of Methods of Vector Relaxation of Systems. A systems approach to the 
solution of systems of partial differential equations, forming a continuous model, was formu- 
lated in [3]. This method can be used to classify the methods of vector relaxation of systems 
(VRS) for solving the equations of the discrete physical-topological mode. The main distin- 
guishing properties of the VRS methods are i) the basis and 2) the sequence of the solution 
of the systems of algebraic equations of the model. They can be classified precisely based 
on these two properties. Thus Hummel's method is a one-step VRS method in the basis R, n, p, 
~, ~ of variables which are unknown grid vectors for the discrete model.* A number of other 
methods can be classified according to Table I. In accordance with the table, in the short 
representation of the VRS method an opening brace { and a closing brace } are employed to 
distinguish the basis of each step. As a result the differences between the methods become 
obvious even in the short representation. 

In accordance with the adopted approach to the classification the method studied below 
can be interpreted as a three-step VRS method. 

Three-Step VRS Method. In solving the system (29)-(32) [i] we carried out a series of 
preliminary transformations. We shall quasilinearize the discrete analog of PoissonVs equa- 
tion with respect to the correction 8~ taking into account (8) [i], more precisely, for fixed 
values of Qn' QP' and T. This gives 

J* (n, p, T)65  = - - E * ( %  tz, p). (12) 

In transforming the discrete analogs of the continuity equations the linearization is per- 
formed by introducing three additional variables instead of R: 

W = "r,~ [p + ni (T)] -+- "q, In -6 nz (T)I, 

Wp = pW -~, 

W~ = nW-L 

The transformation to the corrections ~n and ~p is performed next. This gives 

(13) 
(14) 

(15) 

An(% T, Wp)8n = - - E n ( %  n, T, Wp, W), (16) 

AP(% T, W~)80=--EP(~, p, T, W~, W). (17) 

A similar equation can also be derived for the correction ~U: 

B*6U =- -EU(~ ,  n, p, T, U). (18) 

The main point of the transformation to ~n, ~p, and 6U lies in the fact that this trans- 
formation reduces the effect of the round-off errors, which is espec~ally important in the 
analysis of functionally integrated elements. The specific form of A ~, E ~, A n , E n, etc., can 
be easily found from (29)-(32) [i] taking into account (20)-(28) of [i]; we omit it here be- 
cause of its cumbersomeness. The boundary conditions are taken into account automatically 
just like in [7]. 

As a result the three-step VR~ method can h~ ~resented ~s follows: I) the starting 
approximation for ~o, n ~ U o ~ = = = , pO, is given; 2) S1 = ~; 3) S1 S1 + i, $2 0; 4) $2 $2 + I, 
$3 = O, and the discrete analogs of the Poisson equation and the continuity equations for 
holes and electrons with fixed T~ i.e., T S~-~, are solved simultaneously; 5) the discrete 
analog of Poisson's equation is solved by Newton's method for * with fixed Qn and Q : a) m = 
i, where m is the number of the Newton's iteration; b) (12) is solved for ~m for f~xed A ~ 

and E ~) ~s,,s2,m-1, nS1'Sa'S3'm-~, PSI'Sa'S3'm-*', c) the new values ~S*,Sa,m = ~S*,Sa,m-~ + 

~m and the concentrations n SI'Sa'S3'm -- nS1'Sa'S3'm-*exp (~m/TSZ-z), pSz,Sa,S3,m = 

pS,,S2,S3,m-I exp (--~m/TSI-I), m = m + I) are found; d) the substeps 5b and 5c are repeated 

a fixed number of times or in accordance with the criterion I m ~ ]max/I~m-~]max ~ K, where 

K z i0 (after this the index m is dropped); 6) $3 = $3 + i, the discrete analogs of the equa- 

*In accordance with the notation of [i], n, p, ~, etc., are grid vectors {n i ~}, {p~ ~}, 
j , J ~ J {~i, }, etc. In this part of the work i, j and the braces are omitted for simplicity. 
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tions of continuity are solved simultaneously by the VRS method with fixed ~; 7) W $3 W $3 
' p ' 

and W ss are calculated according to (13)-(15) with fixed n $I,$2,s3-I pS~,S=,S3-1; 8) (16) n 
and (17) are solved for ~n $3, ~pS3, with fixed A n , A p, E n, E p) ~$I,$2 nSI,S2,S3-~, pS~,S2,S~-I 

W S', W $3, wS'; 9) the new values of n $I'$2,S" = nSI,S2, S,-I + ~n Ss, pSI,S=,S, = pSI,S2,S,-: + 

~pS3 are calculated; i0) the steps 6-9 are repeated either a fixed number of times NS3 or un- 
til the required convergence is achieved; Ii) the steps 4-10 are repeated either a fixed num- 
ber of times NS2 or until the required convergence is achieved (after this the indices $2 and 
S3 are dropped) ; 12) Eq. (18) is solved for 6U S~ with fixed E u) ~$I, nS:, pS:, uS~-:, TSI-~; 

13) the new values of U S~ = U S~-~ + ~U $I and T S: = (uS:) -s are found; 14) the steps 3-13 of 
the three-step VRS method are continued until the required accuracy is achieved. We note 
that when the upper right index is set to zero in any variable the last value of that variable 
is used automatically. 

The foregoing method can be briefly written as follows: {{4, {Qn, Q-}}, ~U, U, T}. In 
addition, the internal steps of the method (the steps 6-10) are implemented in practice, tak- 
ing into account the linear relationship between n, p, and Qn, QD for fixed ~ and T, in the 
basis n and p of the main variables. Therefore, they can be implemented as follows: {W, Wn, 
W , ~n, ~p, n, p}. The significance of this step lies in the fact that the total current 
d~nsity is conserved (VJT = 0) at each iteration, denoted by index $2.* 

The significance of the second set of steps (4-11) lies in the fact that the basic dif- 
ficulty in implementing the model is the solution of the discrete analogs of the continuity 
and Poisson equations with fixed T. This is a reflection of the smaller contribution of self- 
heating compared with effect of the temperature of the surrounding medium on current transport 
in VLSIC elements. As a result of this, the changes in the temperature caused by self-heating 
are best taken into account after the discrete analogs of the continuity and Poisson equations 
have already been solved (for example, l~11max is small and equals 0.I in normalized units). 

Universal Modeling Program. The method described above was used to develop a universal 
program for two-dimensional numerical simulation of semiconductor devices and structures UN- 
TEMP. It is written in FORTRAN-IV for the ES series of computers (OS operating system) and 
its structure is similar to that of the PNAIIL program [2]. 

The main information output by UNTEMP is: i) the distribution of the electrostatic poten- 
tial 4, the hole density p, the electron density n, the temperature T, and the current densi- 
ties in' ~p' and JT over the structure of the element; 2) the currents through the contacts. 

The calculation of the latter quantities can be difficult in many cases (sometimes for 
very small values of expressions of the type I(~i+2S,j --~i,j)/(Ti+aS:j + Ti,j) I at the con- 

tact [i]). It is not desirable to perform an enormous number of iterations, even with double- 
precision accuracy, in order to obtain superhigh accuracy in the calculation of the main vari- 
ables for the purpose of subsequent calculation of the currents by integration of ~ over the 
contact, since tens and hundreds of iterations will be needed merely to suppress the t roundoff 
errors. Different algorithms, realizable on a computer, for the construction and implementa- 
tion of discrete models will behave differently in such situations. In addition, the following 
factors could have significant effect: i) the parameters of the structure; 2) the applied 
voltages; 3) the spatial grid; 4) the methods employed to solve the systems of linear algebra- 
ic equations and their parameters; 4) the methods for calculating the coefficients of the dif- 
ference scheme (for example, simply a transportation of the sequence of calculations #) , lead- 
ing to different propagation of roundoff errors in the computational process, and many others. 
In addition, the final results for the main variables will differ insignificantly (by less 
than 0.1%). In this connection, in calculating the currents in these situations the principle 
of conservation of the total current, i.e., the integral analog of V I T = 0, can be employed 
successfully. 

The main difficulty lies in the method used to select the integration contour ABC encom- 
passing the contact (see Fig. i). After this is done, the current through the contact i c can 

*This property should not be confused with the~property of full conservativeness of the dif- 
ference scheme [5], evaluated on the solution of the problem. 
#The introduction of additional arithmetic operations can have a bad effect in this case. 
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TABLE i. Classification of VRS Methods 

Class Method Basis, short notanon 

One-step 
One-'step 
One-step 

One-step 

One-step 
Two-step 

Hummel [4] 
Seidman-Chu [4] 
P ol 'skii-P okhvali na 
[5] 

Batalow-D 'yakonov- 
Kremlev [6] 

[41 
[31 

{R, n, p, ~r r 
{W, W~, Wp, m p, &~, 9} 
{w, ~/,~, ~vp, ~, p, Cp} 

{~p, ~, n, p, W, R, 6<Dn, ~(Dp,n, p} 

{W, WOn, WQp, Qn, Qp, F} 
First step 
{F, Q}, where Q = {Qn, Q.p} 
Second step 
(w, wo~, wo~,.Q~, Qv} 
or, briefly, 
{F, {W, WQ=, WQp, Q~, Qv}) 

*The representation of the VRS methods in the short form corres- 
ponds to that adopted in the works indicated in the "Method" 
column, 

R r C t 
I I C I; 

77 

Fig. i. Choice of the contour for the 
calculation of the current flowing 
through the contact. 

be calculated from the formula 

IR = - -  .f jTN sdl. 
ABC 

Several concrete variants of methods for selecting the contour for a bipolar transistor 
are given in [8, 9]. We employed quite general variants, admitting automation of the process, 
namely, i) the encompassing contour within the structure of the element is chosen to pass be- 
tween neighboring nodes of the grid, for which relations of the type k= < J(~+2s.j--~i.j)/ 
(Ti+2sj+T~j) I~K~ hold in the perpendicular direction, while violations-of this rule are al- 
lowed only on the surface (segments A'A and CC') through which current does not flow [I]; 2) 
the component of the total current density perpendicular to the contact is calculated on a 
coarser grid, obtained by eliminating nodes from the grid in tile corresponding direction, and 
in addition for the new grid a condition of the type i(~+~s~--~)/(T~+~s~+T~)]>~K2, must 
hold, where n and r enumerate the nodes of the coarse grid, while ~n+2S,r, ~n,r' Tn,r' Tn+~s,r 

are the values of the variables which have already been calculated at the nodes of the fine 
grid that coincide with the nodes of the coarse grid. Both methods give good results. Although 
the first method is more accurate, the second method is applicable in practically all cases. 

The different electric parameters of the elements can be easily calculated based on the 
indicated output information (especially from the Current-voltage characteristics), 

NOTATION 

T, temperature; Tenv, temperature of the environment; QT, density of the power released 
in the element; j , j , and iT, hole current, electron current, and total current density 
vectors; q, electron c~arge; ~_ and ~n' mobilities of the holes and electrons; ~_o and ~nO, 
values of ~n and ~n in weak fields; p and n, hole and electron densities; ~n andPSn ' Fermi 
quasilevels~of holes and electrons; R, excess of the recombination rate above the generation 
rate; ni, intrinsic density; ~ and T , electron and hole lifetimes; N d and N , densities of �9 . n a 
1onlzed donors and acceptors; 0, volu~e charge density; Va~, applied voltage; Ns, normal to 
the boundary; k, Boltzmann's constant; U, an auxiliary variable, equal to T-X/s [i]; SI, $2, 
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and $3, numbers of iterations at the first, second, and third steps of the VRS method; Z sl, 
value of the variable Z at the Sl-th iteration; Qn and Q , auxiliary variables, equal to 
n. exp(--~ /T) and n. exp (~ /T), respectively (normalize~ form~; Zj~, value of the variable 
l n l . " 

Z at the node of the spatia~ grld with indices i and j; and KI and ~2, parameters. 
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